A binary tree is a tree data structure in which each parent node can have at most two children. Each node of a binary tree consists of three items:
A full Binary tree is a special type of binary tree in which every parent node/internal node has either two or no children.
To learn more, please visit full binary tree.
A perfect binary tree is a type of binary tree in which every internal node has exactly two child nodes and all the leaf nodes are at the same level.
To learn more, please visit perfect binary tree.
A complete binary tree is just like a full binary tree, but with two major differences
To learn more, please visit complete binary tree.
A degenerate or pathological tree is the tree having a single child either left or right.
A skewed binary tree is a pathological/degenerate tree in which the tree is either dominated by the left nodes or the right nodes. Thus, there are two types of skewed binary tree: left-skewed binary tree and right-skewed binary tree.
It is a type of binary tree in which the difference between the height of the left and the right subtree for each node is either 0 or 1.
To learn more, please visit balanced binary tree.
A node of a binary tree is represented by a structure containing a data part and two pointers to other structures of the same type.
struct node < int data; struct node *left; struct node *right; >;
# Binary Tree in Python class Node: def __init__(self, key): self.left = None self.right = None self.val = key # Traverse preorder def traversePreOrder(self): print(self.val, end=' ') if self.left: self.left.traversePreOrder() if self.right: self.right.traversePreOrder() # Traverse inorder def traverseInOrder(self): if self.left: self.left.traverseInOrder() print(self.val, end=' ') if self.right: self.right.traverseInOrder() # Traverse postorder def traversePostOrder(self): if self.left: self.left.traversePostOrder() if self.right: self.right.traversePostOrder() print(self.val, end=' ') root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) print("Pre order Traversal: ", end="") root.traversePreOrder() print("\nIn order Traversal: ", end="") root.traverseInOrder() print("\nPost order Traversal: ", end="") root.traversePostOrder()
// Binary Tree in Java // Node creation class Node < int key; Node left, right; public Node(int item) < key = item; left = right = null; >> class BinaryTree < Node root; BinaryTree(int key) < root = new Node(key); >BinaryTree() < root = null; >// Traverse Inorder public void traverseInOrder(Node node) < if (node != null) < traverseInOrder(node.left); System.out.print(" " + node.key); traverseInOrder(node.right); >> // Traverse Postorder public void traversePostOrder(Node node) < if (node != null) < traversePostOrder(node.left); traversePostOrder(node.right); System.out.print(" " + node.key); >> // Traverse Preorder public void traversePreOrder(Node node) < if (node != null) < System.out.print(" " + node.key); traversePreOrder(node.left); traversePreOrder(node.right); >> public static void main(String[] args) < BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); System.out.print("Pre order Traversal: "); tree.traversePreOrder(tree.root); System.out.print("\nIn order Traversal: "); tree.traverseInOrder(tree.root); System.out.print("\nPost order Traversal: "); tree.traversePostOrder(tree.root); >>
// Tree traversal in C #include #include struct node < int item; struct node* left; struct node* right; >; // Inorder traversal void inorderTraversal(struct node* root) < if (root == NULL) return; inorderTraversal(root->left); printf("%d ->", root->item); inorderTraversal(root->right); > // Preorder traversal void preorderTraversal(struct node* root) < if (root == NULL) return; printf("%d ->", root->item); preorderTraversal(root->left); preorderTraversal(root->right); > // Postorder traversal void postorderTraversal(struct node* root) < if (root == NULL) return; postorderTraversal(root->left); postorderTraversal(root->right); printf("%d ->", root->item); > // Create a new Node struct node* createNode(value) < struct node* newNode = malloc(sizeof(struct node)); newNode->item = value; newNode->left = NULL; newNode->right = NULL; return newNode; > // Insert on the left of the node struct node* insertLeft(struct node* root, int value) < root->left = createNode(value); return root->left; > // Insert on the right of the node struct node* insertRight(struct node* root, int value) < root->right = createNode(value); return root->right; > int main() < struct node* root = createNode(1); insertLeft(root, 2); insertRight(root, 3); insertLeft(root->left, 4); printf("Inorder traversal \n"); inorderTraversal(root); printf("\nPreorder traversal \n"); preorderTraversal(root); printf("\nPostorder traversal \n"); postorderTraversal(root); >
// Binary Tree in C++ #include #include using namespace std; struct node < int data; struct node *left; struct node *right; >; // New node creation struct node *newNode(int data) < struct node *node = (struct node *)malloc(sizeof(struct node)); node->data = data; node->left = NULL; node->right = NULL; return (node); > // Traverse Preorder void traversePreOrder(struct node *temp) < if (temp != NULL) < cout data; traversePreOrder(temp->left); traversePreOrder(temp->right); > > // Traverse Inorder void traverseInOrder(struct node *temp) < if (temp != NULL) < traverseInOrder(temp->left); cout data; traverseInOrder(temp->right); > > // Traverse Postorder void traversePostOrder(struct node *temp) < if (temp != NULL) < traversePostOrder(temp->left); traversePostOrder(temp->right); cout data; > > int main() < struct node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); cout